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Abstract
Background New daily persistent headache (NDPH) is a rare primary headache disorder characterized by daily and 
persistent sudden onset headaches. Specific abnormalities in gray matter and white matter structure are associated 
with pain, but have not been well studied in NDPH. The objective of this work is to explore the fiber tracts and 
structural connectivity, which can help reveal unique gray and white matter structural abnormalities in NDPH.

Methods The regional radiomics similarity networks were calculated from T1 weighted (T1w) MRI to depict the gray 
matter structure. The fiber connectivity matrices weighted by diffusion metrics like fractional anisotropy (FA), mean 
diffusivity (MD) and radial diffusivity (RD) were built, meanwhile the fiber tracts were segmented by anatomically-
guided superficial fiber segmentation (Anat-SFSeg) method to explore the white matter structure from diffusion MRI. 
The considerable different neuroimaging features between NDPH and healthy controls (HC) were extracted from the 
connectivity and tract-based analyses. Finally, decision tree regression was used to predict the clinical scores (i.e. pain 
intensity) from the above neuroimaging features.

Results T1w and diffusion MRI data were available in 51 participants after quality control: 22 patients with NDPH 
and 29 HCs. Significantly decreased morphological similarity was found between the right superior frontal gyrus and 
right hippocampus. The superficial white matter (SWM) showed significantly decreased FA in fiber tracts including the 
right superficial-frontal, left superficial-occipital, bilateral superficial-occipital-temporal (Sup-OT) and right superficial-
temporal, meanwhile significant increased RD was found in the left Sup-OT. For the fiber connectivity, NDPH showed 
significantly decreased FA in the bilateral basal ganglion and temporal lobe, increased MD in the right frontal 
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Background
New daily persistent headache (NDPH) is an uncom-
mon headache disorder distinguished by the recurrence 
of daily headaches shortly after their initiation, usually 
in patients without a prior headache history [1]. Indi-
viduals diagnosed with NDPH can precisely delineate the 
moment when their headaches first appeared [2]. Previ-
ous epidemiological investigations have reported that the 
prevalence of NDPH in the general population ranges 
from 0.03 to 0.1% [3, 4]. Although the exact pathogenesis 
of NDPH remains unknown, the nociceptive transmis-
sion of migraine pain has been investigated, and some 
cortical areas involved in pain perception may affect the 
whiter matter tracts connecting them [5]. In recent years, 
neuroimaging studies have been increasingly applied 
to primary headaches showing, specifically in migraine, 
widespread white matter abnormalities [6–9]. However, 
NDPH sometimes presents predominantly with migraine 
features, which may complicate the diagnosis. Addition-
ally, relatively few studies have investigated NDPH [4, 10, 
11]. The association with cortical morphological changes 
and white matter structural abnormalities from MRI may 
help to understand the underlying mechanisms of NDPH.

Despite several studies using MRI for NDPH [12–15], 
there remains a distinct lack of research focusing on the 
network of anatomically connected regions. At present, 
two standard approaches are available for imaging ana-
tomical connectivity in humans: structural covariance 
network (SCN) analysis on T1 weighted (T1w) MRI and 
tractography from diffusion MRI (dMRI). SCN is a net-
work mapping based on inter-regional similarity of mor-
phometric parameters (i.e. cortical thickness) measured 
using MRI. It captures cortical structures and is well cor-
related to cytoarchitecture similarity [16]. While dMRI 
tractography provides the trajectory of axonal tracts.

For gray matter structural measurements in T1w MRI, 
previous studies have found some regions with reduced 
cortical thickness, decreased cortical surface area and 
different regional gray matter volume in patients with 
NDPH [12, 13]. However, these findings typically analyze 
single/several anatomical regions independently without 
considering associations between brain regions.

For white matter structural descriptions in dMRI, 
tract-based spatial statistics (TBSS) and diffusion ten-
sor imaging (DTI) along the perivascular space (ALPS) 
analyses have been applied to investigate the alterations 
of the white matter microstructure in NDPH [14, 15]. 
TBSS analysis, which utilized the white matter skeleton, 
was employed to capture the microstructural abnor-
malities. Several deep white matter (DWM) tracts exhib-
ited decreased fractional anisotropy (FA), along with 
increased mean diffusivity (MD) and radial diffusivity 
(RD) compared with healthy controls [14]. And no sig-
nificant differences between groups were observed in 
ALPS index (i.e. the glymphatic function) compared 
with healthy controls [15]. However, these methods are 
unable to capture abnormalities in the fiber connections 
between different brain regions. This is not only because 
of partial volume effects [17], but also due to the exclu-
sive assessment of the white matter tracts, as they do 
not focus on the sections connecting each potential pair 
of regions. In addition, DWM contains long fibers that 
connect distant areas, which have been extensively stud-
ied and well documented, while superficial white matter 
(SWM) fibers have been often left aside. SWM fibers are 
short connections which hook-up close-by areas (often 
neighboring gyri) surrounding the cortex sulci, and they 
are little known since their small sizes and their proxim-
ity to the cortex pose a challenge to study [18]. The SWM 
abnormalities are found in diseases like Huntington’s 
and Alzheimer’s disease and are correlated with cogni-
tion function [19–21]. For NDPH, TBSS analysis [14] has 
shown significant structural changes in the SWM region. 
However, the lack of support from a better SWM and 
DWM segmentation method hinders further explora-
tion. Since NDPH involves a chronic pain state, which is 
related to cortical and subcortical regions. It is necessary 
to study the SWM structure of patients with NDPH.

For NDPH, the exploration of morphological variations 
across brain regions, along with the identification of dis-
parities in DTI metrics of interregional fibers and specific 
tracts, present unexplored opportunities like mecha-
nism research and clinical intervention. In this study, we 
hypothesized that (1) The gray matter and white matter 
structures influence each other; (2) patients with NDPH 

lobe, and increased RD in the right frontal lobe and left temporal-occipital lobe. Clinical scores could be predicted 
dominantly by the above significantly different neuroimaging features through decision tree regression.

Conclusions Our research indicates the structural abnormalities of SWM and the neural pathways projected 
between regions like right hippocampus and left caudate nucleus, along with morphological similarity changes 
between the right superior frontal gyrus and right hippocampus, constitute the pathological features of NDPH. The 
decision tree regression demonstrates correlations between these structural changes and clinical scores.
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have considerable gray matter morphological similari-
ties changes compared with healthy controls (HC); (3) 
NDPHs have meaningful white matter structural changes 
compared with HCs; and (4) the gray matter and white 
matter structures can both dominate the prediction of 
clinical characteristics in NDPHs. The objective of this 
study was to assess the white matter tracts and interre-
gional structural connectivity changes in patients with 
NDPH, and their relationship with clinical scores.

Methods
Standard protocol approvals, registrations, and patient 
consents
The study protocol was approved by the local ethics 
committee of Beijing Tiantan Hospital, Capital Medical 
University (number: KY2022-044), and our study was 
registered on ClinicalTrials.gov (NCT05334927). All par-
ticipants gave written informed consent.

Demographic data and neuropsychological tests
The cross-sectional MRI study including participants 
from the headache outpatient unit at Beijing Tiantan 
Hospital (Capital Medical University). Fifty-four par-
ticipants, including 24 patients with NDPH and 30 HCs, 
were consecutively enrolled. The inclusion criteria for 
patients with NDPH were as follows: (1) NDPH diagno-
sis based on the International Classification of Headache 
Diseases, 3rd edition [1]; (2) feasibility of MRI scan; (3) 
without preventive treatment for at least 3 months; and 
(4) without the history of excessive use of acute treat-
ment drugs. The general exclusion criteria for patients 
with NDPH and HCs were as follows: (1) combined with 
other types of primary headache and pain disorders; (2) 
pregnancy or breastfeeding; (3) combined with other 
neurological, cardio-cerebrovascular, and endocrine sys-
tem diseases; (4) any drug or alcohol abuse history; (5) 
first degree relative with headaches; and (6) significant 
brain lesions or white matter hyperintensities (Fazekas 
score > 1, especially at the level of the lateral ventricular 
body). For the MRI data of all 54 enrolled subjects, two 
experienced neuroradiologists visually checked them to 
exclude three subjects with incomplete brain structure 
scans.

Demographics, body mass index (BMI), headache dis-
ease duration (years), clinical scores including Visual 
Analogue Scale (VAS), Headache Impact Test-6 (HIT-6) 
scores, Patient Health Questionnaire-9 (PHQ-9) scores, 
Generalized Anxiety Disorder-7 (GAD-7) scores, Pitts-
burgh Sleep Quality Index (PSQI) scores and Montreal 
Cognitive Assessment (MoCA) scores were collected in 
patients with NDPH. The VAS allows patients to self-
report the perceived intensity of their pain, where a 
higher score indicates greater pain [22]. And the HIT-6 
questionnaire evaluates the wide burden of headache, 

with higher scores indicating greater impact on the 
daily life of the respondent [23]. The score of PHQ-9 is 
commonly used to screen for depression with a rec-
ommended cut-off score of 10 [24]. The scores of 10 or 
higher on the GAD-7 indicates generalized anxiety dis-
order [25]. The PSQI score is used to evaluate the quality 
and patterns of sleep and poor quality is defined when it 
≥ 7 [26]. And the MoCA score < 26 indicates that the par-
ticipant has some degree of cognitive impairment [27].

MRI acquisition
All participants underwent brain MRI on a 3T GE MR 
scanner (Signa Premier, GE Healthcare) with a 48-chan-
nel head coil. The participants were instructed to remain 
motionless with their eyes closed during the MRI acqui-
sition. The T1w images were acquired by using the mag-
netization-prepared rapid gradient echo (MPRAGE) 
echo sequence (echo time (TE) = 2.96 ms, repetition 
time (TR) = 1983.81 ms, inversion time (TI) = 880 ms, flip 
angle = 8°, field of view 250 mm, resolution = 1.0 × 1.0 × 1.0 
mm3), and the diffusion-weighted images were 
acquired by using the spin-echo EPI sequence (TE = 85 
ms, TR = 5285 ms, field of view 208  mm, resolu-
tion = 2.0 × 2.0 × 2.0 mm3. The dMRI data include 9 
images of b = 0, 50 gradient directions with a b-value of 
1000 s/mm2 and 50 gradient directions with 2000 s/mm2 
under the anterior-to-posterior phase encode direction, 
and include 4 images of b = 0 and 3 gradient directions 
with 2000  s/mm2 under the posterior-to-anterior phase 
encode direction.

Imaging analysis
The pipeline of imaging analysis was shown in Fig.  1. 
The T1w and dMRI data were firstly preprocessed, then 
with the goal of studying interregional connectivity, we 
constructed connectivity matrices weighted by DTI met-
rics and morphological similarities. The DTI metrics 
weighted connectivity matrices were generated from the 
whole brain tractograms. The regional radiomics similar-
ity networks (R2SN) [28] were built from T1w MRI. Spe-
cifically, R2SN is a type of SCN. Compared with simple 
SCN methods, R2SN utilizes more morphological vari-
ables and captures finer structural changes. In addition, 
we employed a new method anatomically-guided super-
ficial fiber segmentation (Anat-SFSeg) [21] to segment 
SWM and DWM fiber tracts and then identified the 
tract-specific alterations. Finally, the tract-based analysis 
was performed after fiber segmentation, and matrices-
based analysis was generated from the fiber connectivity 
matrices and R2SN construction.

Tract-based analysis
Diffusion weighted images were preprocessed using 
MRtrix3 [29]. Briefly, for each scan, diffusion images 
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were denoised (dwidenoise in MRtrix3 [30]), Gibbs ring-
ing correction (mrdegibbs in MRtrix3 [31]), head motion 
correction, eddy current-induced and inhomogeneity 
distortion correction (dwifslpreproc [32–35] and dwibias-
correct [36] in MRtrix3), b = 0 reference image creation by 
averaging all images with no gradients. The diffusion ten-
sor was fitted using the same toolbox, and FA, MD, RD, 
and AD maps were generated (dwi2tensor in MRtrix3 
[37, 38]). For T1w MRI, firstly we striped the skulls by 
the Brain Extraction Tool [39] in Oxford Centre for Func-
tional MRI of the Brain Software Library 6.0 (FSL6.0) 
[40], then the images were registered to the O’Donnell 
Research Group (ORG) space [41] using symmetric 
normalization in Advanced Normalization Tools [42]. 
Cortical parcellation was obtained based on the Desi-
kan-Killiany Atlas [43], and the subcortical parcellation 
from a white matter atlas [44] was achieved by recon-all 
in FreeSurfer7.4.1 [45, 46]. Subsequently, the b = 0 refer-
ence image was registered to the T1w images using the 
FMRIB’s Linear Image Registration Tool in FSL6.0, and 
this transform was applied to register the preprocessed 
diffusion data.

After the data preprocessing, the fiber orientation dis-
tribution (FOD) was estimated using the constrained 
spherical deconvolution method [47]. The probabilistic 
whole-brain tractography method second-order integra-
tion over FOD [48] was conducted to generate the whole 
brain tractograms. The tractography settings were used: 
step size = 1 mm; maximum angle theta between succes-
sive steps = 45°; minimum length of any track = 10  mm; 
maximum length of any track = 200 mm; FOD amplitude 
cutoff threshold for terminating tracks = 0.1. Finally, the 
whole brain tractograms were also registered in ORG 
space using the unbiased groupwise registration method 
[49].

Using an advanced point-cloud-based neural network 
Anat-SFSeg [21], the whole brain tractogram was seg-
mented into 800 fiber clusters including both SWM (198 
clusters) and DWM (602 clusters), which are based on the 
ORG Fiber Clustering White Matter Atlas [41] (https:/ /
github .com/Sl icer DMRI/ORG-Atlases). Guided by the 
cortical and subcortical brain regions from T1w MRI 
using FreeSurfer7.4.1 [45, 50], Anat-SFSeg performed 
best in segmenting these fiber clusters. Specifically, 

Fig. 1 The framework contains data preprocessing and data analyses. Diffusion MRI (dMRI) data were preprocessed to generate the fractional anisotropy 
(FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps and the whole-brain tractograms, and T1-weighted (T1w) MRI were pre-
processed and registered to standard space. The data analyses include fiber segmentation, fiber connectivity matrices and regional radiomics similarity 
networks (R2SN) construction. The whole brain tractograms were segmented into superficial white matter (SWM) and deep white matter (DWM) tracts 
by anatomically-guided superficial fiber segmentation (Anat-SFSeg) method, and five fiber connectivity matrices were generated using the anatomical 
automatic labeling (a second version, AAL2) atlas. For R2SN construction, 25 radiomics features of each brain region in T1w MRI were first extracted, then 
the Pearson’s correlations between these features of paired brain regions were calculated, which formed a matrix named R2SN
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Anat-SFSeg consisted of a unique fiber anatomical 
descriptor as well as a deep learning network based on 
point-cloud data. The fiber anatomical descriptor was 
generated by mapping the whole brain fibers to the corti-
cal and subcortical brain regions. And the spatial coordi-
nates of the fibers, represented as point clouds, alongside 
the anatomical descriptor were fed into the neural net-
work. This network was trained using high-quality data 
from the 100 participants in the Human Connectome 
Project. For inference, firstly, the stage-one pre-trained 
models were used on the clinical data to classify SWM 
and DWM [51], then they were accurately segmented 
to 198 and 602 clusters through the Anat-SFSeg’s pre-
trained weights respectively. For SWM, the 198 clusters 
were further composed into 16 categories in the left and 
right hemispheres according to their anatomical loca-
tions. And for DWM, 602 clusters were further combined 
into 60 categories. Finally, DTI metrics were extracted, 
and the average FA, MD, RD, and AD values were calcu-
lated along these categories.

Matrices-based analysis
For dMRI, several fiber connectivity matrices weighted 
by mean FA, mean MD, mean AD, mean RD, and stream-
line count were generated from the whole brain tracto-
grams. Streamline, which is the reconstructed fiber and 
is a more geometric term formed by connecting many 
three-dimensional point coordinates. These matrices 
were 90 × 90 because they were generated between each 
pair of subregions of the anatomical automatic labeling (a 
second version, AAL2) atlas [52], which contains 90 sub-
regions in the bilateral cerebrum. Two regions A and B 
were considered to be connected with each other if one 
or more streamlines terminated in region A also termi-
nated in region B.

For T1w MRI data, R2SN [28] was generated for 
each participant to depict the morphological similar-
ity between different brain regions. Specifically, the 
radiomics features for each brain region defined in the 
AAL2 atlas were extracted. The definitions and detailed 
descriptions of these radiomics features can be found in 
previous publications [53–55]. Briefly, the subregions’ 
radiomics features were extracted using the pyradiomics 
tool [56], and 25 features including both intensity and 
texture features were retained after selection. The inten-
sity features include energy, kurtosis, mean absolute 
deviation, skewness, entropy, etc. The textural features 
contain autocorrelation, cluster prominence, clus-
ter shade, cluster tendency, high gray-level run-length 
emphasis, and high gray-level long run-length emphasis, 
among others. The specific radiomics features analyzed 
in this study were based on those described in the pre-
vious research [28]. Finally, the R2SN was established 

by calculating the Pearson’s correlations of the pairwise 
interregional normalized features.

Statistical analyses
Demographic characteristics were compared by apply-
ing two-sample unpaired t-tests for continuous variable 
which belongs to normal distribution (BMI) and Mann-
Whitney test for skewed distribution (age), and chi-
squared test for the qualitative variable (sex), respectively. 
For tract-based analysis, the average DTI metrics for the 
16 SWM and 60 DWM fiber categories were extracted to 
test the differences between NDPH and HC. The 2-sam-
ple unpaired t-tests of FA, MD, RD, and AD metrics for 
each fiber category were conducted, with adjustment for 
age and sex variables. The tract-based results were con-
sidered significant at corrected p < 0.05 after Bonferroni 
multiple comparisons. For matrices-based analysis, each 
participant contains six 90 × 90 matrices. For the five fiber 
connectivity matrices, we utilized the network-based sta-
tistic (NBS) approach [57] to make multiple comparisons 
thus to identify significant fiber connections between the 
patients and HCs using Gretna software  [  5 8  ] (    h t  t p : /  / w  w 
w . n i t r c . o r g / p r o j e c t s / g r e t n a      ) .  The analysis was conducted 
with edge-wise t-tests, applying an edge-level significance 
threshold of p < 0.005. Statistical significance was deter-
mined after 5,000 permutations, and subnetworks with a 
corrected component-level p < 0.05 were considered sta-
tistically significant. For R2SN, we conducted Bonferroni 
multiple comparisons on the edge-wise t-test results, and 
the connection with a corrected p < 0.05 was considered 
statistically significant.

Feature importance for predicting clinical characteristics
To explore the associations between the neuroimage fea-
tures extracted above and clinical characteristics (head-
ache history (years), VAS, HIT-6, GAD-7, PHQ-9, PSQI 
and MoCA scores), the decision tree regression was uti-
lized to predict these clinical characteristics by inputting 
age, sex and statistically inter-group significant neuro-
imaging features. Decision tree regression is a machine 
learning technique that predicts the value of a target 
variable by learning simple decision rules inferred from 
the data features [59]. Instead of assuming a causality 
between variables, and works by recursively partitioning 
the data based on the most meaningful feature that best 
separates the target variable. One key aspect of decision 
tree regression is its ability to assess the importance of 
independent variables in predicting the target variable. 
By evaluating how much each variable contributes to 
reducing the variance in the target variable, decision tree 
regression can prioritize and highlight the significance of 
different features in the prediction process. Due to the 
overfitting phenomenon caused by small sample size, 
we took some measures as following. (1) We used 5-fold 
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cross-validation to train and test the model; (2) We tried 
to control the complexity of the decision tree through 
parameter settings; (3) Through multiple experiments, 
we chose the model that minimized the mean squared 
error between the predicted value and the true value.

Results
Demographic and neuropsychological characteristics
Two experienced neuroradiologists visually checked the 
scans and found that 3 subjects (1 HC and 2 patients 
with NDPH) had missing parietal lobes in dMRI data, 
ultimately leaving 51 participants for the study, includ-
ing 22 patients with NDPH and 29 HCs. They all under-
went T1w and diffusion MRI, and their characteristics 
are included in Table 1. All participants had demograph-
ics and BMI scores, and all participants with NDPH 
had headache disease duration (years) and VAS scores. 
Other indicators were only present in some patients with 
NDPH. Other patients were in discomfort or experienc-
ing a headache episode during the assessment, which 
affected their ability to complete the scales. No signifi-
cant differences were found in age, sex, BMI between 
patients and HCs.

Tract-based analysis
The percentage changes of DTI metrics in population-
mean SWM were shown in Fig. 2, as well as several fiber 
tracts with distinctly differences in FA and RD between 
NDPH and HC groups. As observed, there were wide-
spread abnormalities in the RD and FA maps. And the 
differences of FA in SWM fiber tracts between NDPH 
and HC were statistically significant after multiple com-
parisons (uncorrected p < 0.05/16). However, there were 
no significant differences in MD and AD after multiple 
comparisons. The statistical results of all 16 SWM fiber 
tracts can be found in the supplementary materials 
(Result S1).

The significance of the differences among the 16 fiber 
tracts was not consistent. The SWM showed decreased 
FA on the right superficial-frontal (Sup-F), left superfi-
cial-occipital (Sup-O), bilateral superficial-occipital-tem-
poral (Sup-OT), right superficial-temporal (Sup-T), and 
increased RD in the left Sup-OT. There were no signifi-
cant group differences between the AD and RD values in 
the SWM.

For DWM, since there were no significant results after 
multiple comparisons (uncorrected p < 0.05/60), some 
tract results that changed before multiple comparisons 
are presented. For example, patients with NDPH showed 
lower FA than HC on the right arcuate fasciculus (AF), 
right striato-frontal (SF) and left thalamo-occipital (TO). 
Higher RD values were found on the left AF, right unci-
nate fasciculus (UF) and left superior longitudinal fascic-
ulus III (SLF-III). The statistical results of all DWM fiber 
tracts could be found in the supplementary materials 
(Result S1). For illustration, the changes of DTI metrics 
of these fiber tracts between NDPH and HC are shown 
in Fig. 3.

Matrices-based analysis
There were six 90 × 90 matrices including mean FA, MD, 
AD, RD, streamline count and R2SN for each participant. 
The edge-wise t-tests with Bonferroni correction were 
conducted to precisely locate the significantly different 
connections of R2SN structural-based matrix. The NBS 
approach was used to identify the distinct connected 
subnetwork with varying diffusion-based (mean FA, MD, 
AD, RD and streamline count) matrices between the 
patients and HCs. Significantly decreased similarity in 
R2SN between the right superior frontal gyrus (medial 
orbital) and right hippocampus was found in NDPH 
compared to HC (corrected p < 0.05). For the structural 
connectivity analysis, patients with NDPH showed a 
significantly decreased component of FA values in the 
bilateral basal ganglion and temporal lobe, a significantly 
increased component of MD values in the right frontal 
lobe, and a significantly increased component of RD val-
ues in the right frontal lobe and left temporal-occipital 

Table 1 Baseline Participant Characteristics
Control 
cohort
(n = 29)

NDPH 
cohort
(n = 22)

p value

Age, y 32.0 (9.2) 39.8 (21.6) 0.123(dis-
tinct 
variance)

BMI 22.1 (2.9) 23.8 (4.1) 0.114(equal 
variance)

Sex, female/male 17/12 11/11 0.54
Headache disease duration 
(years)

— [1,15] (13.2) —

Pain intensity VAS score — 4.9 (2.0) —
HIT-6 score a — 61.1 (11.2) —
PHQ-9 score b — 9.9 (6.7) —
GAD-7 score c — 7.5 (5.6) —
PSQI score d — 9.4 (4.4) —
MoCA score e — 21.6 (6.5) —
Abbreviations BMI = body mass index; HIT-6 = Headache Impact Test-6; 
MoCA = Montreal Cognitive Assessment; NDPH = new daily persistent headache; 
PHQ-9 = Patient Health Questionnaire-9; PSQI = Pittsburgh Sleep Quality Index; 
VAS = Visual Analogue Scale

Mean (SD) for variables that follow normal distributions. The distribution of 
headache history (years) doesn’t follow a normal distribution, we show the 
interquartile range (SD). The age range of the control cohort is 21 to 59 years 
old, and that of the NDPH cohort is 12 to 80 years old
a The NDPH cohort included 16 participants with HIT-6 score
b The NDPH cohort included 17 participants with PHQ-9 score
c The NDPH cohort included 17 participants with GAD-7 score
d The NDPH cohort included 16 participants with PSQI score
e The NDPH cohort included 10 participants with MoCA score



Page 7 of 14Zhang et al. The Journal of Headache and Pain          (2024) 25:191 

lobe (corrected p < 0.005). And no significant connections 
were found in AD and streamline count matrices. The 
connections with significant differences between NDPH 
and HC are shown in Fig. 4; Table 2.

Feature importance for predicting clinical characteristics
Decision tree regression can prioritize and highlight the 
significance of different features in the prediction pro-
cess. Given that input variables include imaging and non-
imaging features, an importance value of greater than 
50% for neuroimage features was considered to have a 
considerable influence on predicting clinical character-
istics in this study. For SWM fiber tracts, we have iden-
tified the neuroimage features which the importance 
values are than 0.5, as shown in Fig.  5(a). And for the 
fiber connectivity and R2SN matrices, the connections 

that predominantly influence the prediction of specific 
clinical characteristics are shown in Fig. 5(b).

In Fig. 5 (a), most SWM fiber tracts, previously found 
to have significant inter-group differences, could pre-
dominantly guide the prediction of clinical characteris-
tics. Additionally, DTI metrics of some fiber tracts made 
considerable contributions to the prediction of clinical 
scores. For example, the importance of the FA of Sup-F in 
the right hemisphere for predicting HIT-6 reached 0.78. 
In Fig. 5 (b), for the DTI and R2SN matrices, connections 
with significant inter-group differences showed vary-
ing importance for different clinical scores. For exam-
ple, in the FA connectivity matrix, the connection from 
the right hippocampus to the left caudate nucleus had 
a stronger influence in predicting MoCA, while it had a 
slightly lesser impact on predicting other clinical scores.

Fig. 2 Percentage change in population mean superficial white matter (SWM), and several fiber categories with significant differences in FA and RD 
between new daily persistent headache (NDPH) and healthy controls (HC) after multiple comparisons. The uncorrected p values are added under each 
fiber tract. In (a), the population-mean SWM percentage change maps show the differences between NDPH and HC. And several tracts with significant 
differences in FA and RD between groups were shown in (b) and (c). The term ‘NDPH-HC’ refers to the average diffusion tensor metrics of each cluster in 
all patients with NDPH minus the average metrics of each cluster in all HCs. Red indicates an increase in percentage, while blue indicates a decrease. (Ab-
breviations: AD = axonal diffusivity, MD = mean diffusivity, FA = fractional anisotropy, RD = radial diffusivity, Sup-F = superficial frontal, Sup-O = superficial 
occipital, Sup-OT = superficial occipital-temporal, Sup-T = superficial temporal.)
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Discussion
In this study, we found considerable changes in interre-
gional morphological similarity and white matter struc-
tural abnormalities in patients with NDPH using both 
T1w and diffusion MRI. The white matter structure dif-
ferences were generated through both fiber connectiv-
ity matrices and tract-specific studies. And the results 

revealed that patients with NDPH exhibited significantly 
morphological similarity decreased in subregions, and 
decreased FA, increased RD of specific white matter 
structure compared to HC.

Diffusion MRI tractography, which generates three-
dimensional streamlines, offers a noninvasive method 
for fiber connectivity mapping. This method provides a 

Fig. 4 The connections with significant difference between new daily persistent headache (NDPH) and healthy controls (HC). The matrices-based analy-
sis was conducted to precisely locate the significantly different connections of diffusion-based structural connectivity matrices and the regional ra-
diomics similarity network (R2SN). (Abbreviations: FA = fractional anisotropy, MD = mean diffusivity, RD = radial diffusivity)

 

Fig. 3 Percentage change in population mean deep white matter (DWM), and several fiber categories with significant differences before multiple com-
parison in FA and RD between new daily persistent headache (NDPH) and healthy controls (HC) before multiple comparisons. The uncorrected p values 
are added under each fiber tract. In the left, the population-mean DWM percentage change maps show the differences between NDPH and HC. And sev-
eral tracts with significant differences before multiple comparison in FA and RD between groups were shown in the right. The term ‘NDPH-HC’ refers to the 
average diffusion tensor metrics of each cluster in all patients with NDPH minus the average metrics of each cluster in all HCs. Red indicates an increase in 
percentage, while blue indicates a decrease. (Abbreviations: AD = axonal diffusivity, AF = arcuate fasciculus, FA = fractional anisotropy, MD = mean diffusiv-
ity, RD = radial diffusivity, SF = striato-frontal, SLF-III = superior longitudinal fasciculus III, TO = thalamo-occipital, UF = uncinate fasciculus.)
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direct anatomical relationship within white matter, both 
in whole-brain tractogram-based connections and in 
fiber tracts obtained through advanced segmentation 
methods. An increase in MD, reflecting greater water 
molecule diffusion, is often associated with tissue atro-
phy. Increased AD is related to axonal atrophy, while 
increased RD indicates reductions in myelination [60]. 
Decreased FA suggests loss of water directionality, likely 
due to structural damage [61]. Notably, the relation-
ships between DTI metrics and white matter pathologic 
features are interpreted but not completely clear, the 
researchers should be cautious [62].

For white matter structure, the SWM in NDPH showed 
decreased FA in right Sup-F, left Sup-O, bilateral Sup-
OT, right Sup-T, and increased RD in left Sup-OT. These 
findings indicate significant structural abnormalities in 
the SWM of patients with NDPH. The right Sup-F was 
involved in higher cognitive functions and emotional 
regulation [63], suggesting that the emotional dysregula-
tion observed in patients with NDPH. The left Sup-O and 
bilateral Sup-OT were associated with visual processing 

and integration, which may link visual stimuli to pain 
perception pathways, potentially exacerbating headache 
symptoms [64]. The right Sup-T was crucial for audi-
tory and language processing, and its impairment could 
influence how patients perceive and respond to auditory 
information, further affecting their pain experience [64, 
65]. Increased RD in the left Sup-OT may reflect demy-
elination or other structural damage, which could disrupt 
the normal processing of visual and emotional stimuli, 
contributing to the chronic pain and emotional distress 
characteristic of NDPH. Overall, the observed SWM 
abnormalities in these regions highlight their role in pain 
perception and emotion regulation, underscoring the 
impact of white matter structure on the pathophysiology 
of NDPH. Notably, the findings shown in Figs. 2 and 3 are 
not consistent. This means that for the same fiber tract, 
there was a significant decrease in FA, but there was no 
obvious increase in diffusivity. This is a common phe-
nomenon and some reasons are as follows: (1) FA values 
are lower in complex fiber architecture because the direc-
tionality of diffusion on the voxel-scale is lower, which 

Table 2 Connections with significant changes in patients with NDPH compared to healthy controls in gray matter and white matter 
structural connectivity
Matrices Change Brain regions connected P value (uncorrected)
Mean FA weighted matrix Decreased Right Hippocampus-Left Caudate nucleus 0.005

Right Hippocampus-Left Inferior temporal gyrus 0.002
Right Parahippocampal gyrus- Left Caudate nucleus 0.003
Right Angular Gyri-Left Inferior temporal gyrus 0.003
Left Caudate nucleus-Left Heschl gyrus < 0.001

Mean RD weighted matrix Increased Left Hippocampus-Left Calcarine fissure 0.001
Left Hippocampus-Left-Cuneus 0.001
Left Hippocampus-Left Superior occipital gyrus < 0.001
Left Hippocampus-Left-Middle occipital gyrus 0.002
Left Cuneus-Left Superior Temporal gyrus 0.002
Left Middle occipital gyrus-Left Lenticular nucleus putamen 0.003
Right Middle frontal gyrus -Right Lenticular nucleus putamen < 0.001
Right Middle frontal gyrus-Right Superior frontal gyrus 0.002
Right Middle frontal gyrus-Right Lenticular nucleus putamen 0.001
Right Inferior frontal gyrus (triangular part)-Right Superior frontal gyrus 0.001
Right Rolandic operculum-Right Lenticular nucleus putamen 0.001
Right Superior frontal gyrus-Right Insula < 0.001
Right Superior frontal gyrus-Right Caudate nucleus 0.004
Right Superior frontal gyrus-Right Lenticular nucleus putamen 0.002

Mean MD weighted matrix Increased Right Superior frontal gyrus (dorsolateral)-Right Insula 0.002
Right Middle frontal gyrus (orbital part)-Inferior frontal gyrus (orbital part) Right 0.002
Right Middle frontal gyrus (orbital part)-Right Lenticular nucleus putamen < 0.001
Middle frontal gyrus Right-Right Lenticular nucleus putamen 0.001
Right Inferior frontal gyrus (triangular part)-Right Superior frontal gyrus (medial) 0.002
Right Rolandic operculum-Right Lenticular nucleus putamen < 0.001
Right Superior frontal gyrus (medial)-Right Insula < 0.001
Right Superior frontal gyrus (medial)-Right Caudate nucleus 0.001
Right Superior frontal gyrus (medial)-Right Lenticular nucleus putamen 0.001

R2SN Decreased Right Superior frontal gyrus (medial orbital)-Right Hippocampus < 0.001
Abbreviations FA = fractional anisotropy; MD = mean diffusivity; R2SN = regional radiomics similarity networks; RD = radial diffusivity
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leads to a decrease in diffusivity [66]; (2) The statistical 
tests we conducted were adjusted with age and gender, 
which influenced the diffusivity parameters indepen-
dently; (3) There might be errors in the estimation of dif-
fusion tensor metrics.

The neural circuits implicated by white matter pro-
jections fibers were crucial for understanding potential 
mechanisms underlying NDPH, particularly those asso-
ciated with pain perception, emotional processing, cog-
nition and sleep quality. According to our results, the 
significant changes in FA, RD, and MD metrics across 
various white matter tracts suggest that connection dis-
ruptions between caudate nucleus, hippocampus, and 
cortical regions (mainly frontal, temporal, and occipi-
tal lobe) could play a pivotal role in the pathophysiology 
of NDPH. For instance, the decreased FA between the 
right hippocampus and left caudate nucleus, as well as 
other regions like the right inferior temporal gyrus and 
the right Angular gyri, indicate impaired connectivity 
within circuits involved in memory and auditory pro-
cessing [67]. These alterations might affect how patients 
perceive and process sensory information, potentially 
heightening their pain sensitivity [68]. Studies show that 
stimulation of the caudate nucleus reduced pain reactiv-
ity by decreasing the emotional response to pain without 
affecting motor activity or arousal levels [69]. Our study 
found structural damage in the neural projection path-
ways between the bilateral caudate nucleus and frontal 
and temporal lobes. This suggests weakened neural con-
nections between the caudate nucleus and these brain 

regions, potentially contributing to persistent pain and 
emotional responses in NDPH patients. Similarly, the 
increased RD observed between the left hippocampus 
and occipital regions, including the calcarine fissure and 
the superior occipital gyrus, points to demyelination or 
other structural damage in pathways critical for visual 
processing. This disruption could interfere with how 
visual stimuli are integrated and interpreted, which may 
exacerbate headache symptoms through heightened sen-
sory sensitivity or misprocessing.

The increased MD in connections involving the right 
superior frontal gyrus and insula suggests broader struc-
tural abnormalities affecting regions integral to emo-
tional regulation and pain modulation [70]. The superior 
frontal gyrus and insula are known to play important 
roles in the cognitive and affective dimensions of pain 
[68]. Disruptions in these areas could contribute to the 
emotional dysregulation and altered pain perception fre-
quently reported by patients with NDPH. Moreover, the 
significant decrease in R2SN between the right superior 
frontal gyrus (medial orbital) and right hippocampus 
further support the involvement of these regions in the 
neural mechanisms of NDPH. The superior frontal gyrus 
and hippocampus are both related to cognitive functions 
and particularly to working memory [71, 72]. In previous 
studies, it has been shown that interregional morphologi-
cal similarity changes in R2SN reflected imperceptible 
structural changes. And the changes were associated with 
cognition in patients with Alzheimer’s disease and mild 
cognitive impairment [73–75]. Therefore, in this study, 

Fig. 5 The dominance of neuroimaging features for predicting clinical characteristics. The feature importance values greater than 0.5 of different su-
perficial white matter (SWM) fiber tracts are shown in Fig. 5 (a), and the connections that predominantly influence the prediction of specific clinical 
characteristic are shown in Fig. 5(b)
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the changes of morphological similarity in these regions 
suggest that cognition of patients may be affected.

In addition, the importance scores of neuroimag-
ing features from fiber tracts and matrices were calcu-
lated using decision tree regression, which is a robust 
and effective machine learning technique well-suited for 
modeling the relationships between clinical scores and 
neuroimage features [59]. The analysis revealed that the 
DTI metrics of several SWM tracts, including the right 
Sup-F, right Sup-T and left Sup-OT, are crucial for pre-
dicting different clinical scores. Specifically, FA of the 
right Sup-F tract demonstrated a high importance score 
for predicting HIT-6 scores, indicating its significant role 
in assessing the impact of headaches on daily life. More-
over, the results indicated that FA changes in the Sup-OT 
are more closely related to the duration of headache his-
tory, reflecting the progressive nature of NDPH. The con-
nectivity matrix analysis further emphasized that specific 
brain region connections are key predictors of clinical 
scores. For example, the FA connectivity matrix showed 
that the connection from the right hippocampus to the 
left inferior temporal gyrus predicts MoCA scores well, 
suggesting its association with cognitive functions in 
patients with NDPH. Overall, our findings underscore 
the importance of specific SWM tracts and inter-regional 
connections in understanding the neural mechanisms 
underlying NDPH, and offer potential biomarkers for 
predicting clinical outcomes. Decision tree regression 
is able to capture more possible correlations compared 
to the simple partial correlation. At the same time, its 
results were also significantly correlated with the corre-
lation coefficients obtained by simple partial correlation 
(as shown in supplementary materials Result S3). In addi-
tion, compared with traditional multiple linear regres-
sion, the decision tree regression has more advantages 
like strong interpretability and greater robustness to out-
liers. However, in this work, due to the small sample size, 
the model was prone to overfitting. Many experiments 
need to be conducted to select the most suitable model, 
which is not as convenient as multiple linear regression.

In summary, our findings suggest that abnormal 
SWM structure in the frontal, temporal, and occipital 
lobes, along with damage to neural projection path-
ways within these regions, constitutes a pathological 
feature of NDPH. These abnormalities likely disrupt 
the integration of sensory information, emotional 
responses, and cognitive processes, thereby contribut-
ing to the onset and maintenance of chronic headache 
symptoms in patients with NDPH. Notably, the fiber 
connectome provides fine connections between indi-
vidual brain regions, while fiber tracts offer a coarser 
view. So the results of both the DTI matrices-based 
and tract-based analyses are complementary. Under-
standing these alterations provides valuable insights 

into the neural mechanisms underlying NDPH and 
may guide the development of targeted therapeutic 
interventions.

The present study has several limitations and offers 
prospective avenues for further research. First, the 
study was a cross-sectional design research, which 
limits our ability to assess the causalities between neu-
roimaging features and clinical scores. The longitu-
dinal data will be acquired and studied in the future. 
Second, given the rarity of the disease, the num-
ber of participants we were able to recruit was lim-
ited. Despite the limited sample size, the results still 
showed noticeable differences. In the future, we plan 
to recruit more participants to provide a more com-
prehensive assessment of these differences. Third, the 
metrics we have discussed, whether they are tract-
based or matrices-based, are considered as the first-
order indicators. While the second-order indicators, 
i.e. the network properties, equally need to be further 
explored. Fourth, we only used the DTI model com-
bined with a white matter segmentation algorithm to 
explore the abnormalities of white matter structure in 
NDPH, which has not been studied before. Since high 
b-value data were acquired, it is possible to apply other 
more complex models such as diffusion kurtosis imag-
ing, neurite orientation dispersion and density imaging 
models in future research. Fifth, the coordinate sys-
tem in this study is ORG space because the fiber tracts 
atlas is in this space. Although the coordinate origin of 
ORG is very close to the commonly used MNI space, 
this will hinder the promotion of the method. Sixth, 
we primarily focused on cerebral other than cerebel-
lum. Since cerebellum also plays an important role in 
pain modulation, we plan to explore the role of cere-
bellum in NDPH in future studies. Finally, our study 
relied on T1w and dMRI data, which may not capture 
all aspects of brain pathology associated with NDPH. 
Incorporating other imaging modalities such as func-
tional MRI or positron emission tomography could 
provide a more comprehensive understanding of the 
underlying neural mechanism.

Conclusions
The morphological similarity and white matter struc-
tural abnormalities open a window into the patho-
genesis of NDPH. Our research indicates that the 
damage to SWM structure, along with neural projec-
tion pathways within some brain regions, constitute 
one of the pathological features of NDPH. The change 
of morphological similarity between the right superior 
frontal gyrus and right hippocampus further reflects 
the cognitive impairment on brain structure. These 
observations hold great implications for the predic-
tion of clinical characteristics in NDPH, contributing 
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to further advancements in neuroscience research and 
clinical diagnostics.
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